Random image

Will Your COVID19 Vaccine Be Consumed In A Salad?

Eating your veggies isn’t only good for you — it may someday protect you against COVID-19.

That’s the hope of a plant biologist at the University of Ottawa who’s working to create an edible vaccine for the novel coronavirus.

Allyson MacLean’s research involves injecting tomato, potato and lettuce plants with a tiny particle of viral DNA swimming in a bacterial solution. 

“We take a syringe that does not have a needle point. You press it up against the large leaf … and you basically push … the bacteria into the plant tissues,” said MacLean, 41, an assistant professor of plant biology.

The bacteria piggyback that DNA into the plant, which triggers the production of viral proteins. Eating the plant allows these proteins to pass through the digestive system, where they’re taken up by special cells in the gut, stimulating a type of immunity.

It’s called “mucosal immunity,” and it’s of particular interest to the scientists currently joined in battle with COVID-19 because the virus that causes the disease, SARS-CoV-2, enters the body via the mucosal surface of the respiratory system. 

Rooted in nature

MacLean has spent a decade researching symbiosis in nature, specifically how microbes and plants co-exist. One of the most common microbes is Agrobacterium tumefaciens, which lives in soil and naturally latches onto plants.

“It finds a wound in the plant and it gets in there. It takes part of its DNA and injects it into a plant cell. It basically makes the plant cells grow tumours … that the bacteria can then use as a food source,” MacLean explained.

“People realized a few decades ago that this was going on in nature,” she said. “Somebody had the brilliant idea: OK, can we harness this as a way of making genetically modified organisms?”

In her current research to create an edible vaccine for COVID-19, MacLean is using “parts of the virus that other researchers believe will elicit a strong protective antibody response.” They’re catching a ride into the plant tissue on the back of her old friend Agrobacterium.

The research involves tomato, potato and lettuce leaves, but the technique is being tested on this plant, Nicotiana benthamiana, a close relative to tobacco. (Monique Power)

At this point in the research, MacLean is using a close relative of tobacco to determine the best way to make a plant express the viral proteins. Next stop, lettuce. 

The pandemic hasn’t made MacLean’s research This in turn creates a distance between a husband and his wife and ultimately may result in a sharp drop in the blood pressure or a severe heart attack. cloverleafbowl.com generic levitra online It quickly dissolves in the mouth as well as in the bloodstream. tadalafil prices Furthermore abstain from over at this pharmacy online viagra india taking liquor on the grounds that the dynamic add-in of the medication gets ingested into the blood stream quicker. After Pfizer patented their drug in 1996, they began an aggressive marketing campaign directed towards suffers of ED rather than those with angina. http://www.cloverleafbowl.com/ cialis generic india easy. When COVID-19 struck in March, she struggled to move her hands-on laboratory course online, and began alternating work days with her husband so they could care for their two children, ages one and four. 

“It was having to simultaneously balance unprecedented challenges in terms of research, in terms of teaching and in terms of myself as a parent,” MacLean said. “It was really hard.”

She was especially worried about her “precious transgenic mutant plants” that were left behind in the lab when the U of O campus was shut down due to COVID-19.

MacLean had to get special permission to continue tending the ‘precious’ plants in her U of O laboratory during the pandemic. (Monique Power)

“You can’t just stop caring for them or you will lose them,” said MacLean, who arranged permission to feed and fertilize the plants three times a week.

MacLean had an early fascination with biology and ecology. As a child, she set up a dragon fly hospital in her bedroom, catching flies for her patients’ dinner. She harboured a garter snake in her closet one winter. She remembers dabbing a drop of liquid paper on toads in her backyard to see if she could trace their movements.

“I always very much loved living organisms. They just got smaller,” she said.

Allyson MacLean, seen here at age three with her pet caterpillar perched on her shoulder, showed an early interest in ecology and biology. (Submitted by Allyson MacLean)

There are a few conventional COVID-19 vaccines already at the human trial stage, but “it’s premature to stop exploring other avenues,” said MacLean — especially if the outcome is a more efficient route to global immunity.

“Plant-based vaccines are better for the developing world. They’re cheaper to produce. They don’t need … to be refrigerated for long periods of time.”

Plus, she believes people would rather eat their medicine than get a shot.

“People are more willing to ingest a vaccine than they are to get a needle.” 

John Bell, a senior scientist at The Ottawa Hospital and professor at the University of Ottawa, is working with MacLean on the animal testing portion of her research. (The Ottawa Hospital)

MacLean’s work will be tested on mice in collaboration with John Bell of the Ottawa Health Research Institute.

“This project is pairing up a cancer researcher who uses viruses to tackle cancer and a plant biologist who normally studies the way microorganisms interact with plants,” MacLean said. “We’re both stretching out of our comfort zones.”


Posted

in

by

Tags: