corn are particularly important because of increased corn demand created by biofuels production
A new study* indicates that a popular type of genetically engineered corn–called Bt corn–may damage the ecology of streams draining Bt corn fields in ways that have not been previously considered by regulators. The study, which was funded by the National Science Foundation, appears in the Oct. 8 edition of The Proceedings of the National Academy of Sciences.
This study provides the first evidence that toxins from Bt corn may travel long distances in streams and may harm stream insects that serve as food for fish. These results compound concerns about the ecological impacts of Bt corn raised by previous studies showing that corn-grown toxins harm beneficial insects living in the soil.
Licensed for use in 1996, Bt corn is engineered to produce a toxin that protects against pests, particularly the European corn borer. Bt corn now accounts for approximately 35 percent of corn acreage in the U.S., and its use is increasing.
“As part of the licensing process for genetically modified crops, the U.S. Environmental Protection Agency (EPA) was responsible for testing and identifying potential environmental consequences from the planting of Bt corn,” says Jennifer Tank, who is from the University of Notre Dame and is a member of the team studying Bt corn.
To fulfill this requirement, EPA completed studies that assumed that plant parts would remain in fields without being carried away by streams draining agricultural lands, says Tank. In addition, EPA only tested the impacts of Bt corn on small lake organisms that are typically used to test the impacts of chemicals on aquatic ecosystems.
The agency did not evaluate the impacts of Bt corn on organisms that live in streams–even though Midwest agricultural lands where Bt corn is grown are heavily intersected by streams draining the landscape. But despite the limitations of its tests, EPA concluded that Bt corn “is not likely to have any measurable effects on aquatic invertebrates.”
To more comprehensively evaluate the ecological impacts of Bt corn than did the EPA, the research team did the following:
-
Measured the entry of Bt plant parts–including pollen, leaves and cobs–in 12 streams in a heavily farmed Indiana region. The research team’s results demonstrate that these plant parts are washing into local steams. Moreover, during storms, these plant parts are carried long distances and therefore could have ecological impacts on downstream water bodies, such as lakes and large rivers.
-
Collected field data indicating that Bt corn pollen is being eaten by caddisflies, which are close genetic relatives of the targeted Bt pests. Todd V. Royer, a member of the research team from Indiana University, says that caddisflies “provide a food resource for higher organisms like fish and amphibians.”
-
Conducted laboratory tests showing that consumption of Bt corn byproducts increased the mortality and reduced the growth of caddisflies. Together with field data indicating that the caddisflies are eating Bt corn pollen, these results “suggest that the toxin in Bt corn pollen and detritus can affect species of insects other than the targeted pest,” Tank said.
However, with the generics available in the form of tablets, gel, soft tabs and effervescent medicines sildenafil canada are accessible in many delicious flavors. Prostate enlargement is a condition that causes discount viagra cialis hormonal imbalance in the body, while in turn, affects the ovulation process. But just because a lack of sexual drive that occurs due to low testosterone levels have been linked to penis shrinkage. http://deeprootsmag.org/2014/02/09/footlights-discovered-restored-seeking-publisher/ cialis soft order cheap levitra http://deeprootsmag.org/category/reviews/page/4/?feedsort=rand The situation can be worse, if the female partner doesn’t support male partner.
Royer says that “if our goal is to have healthy, functioning ecosystems, we need to protect all the parts. Water resources are something we depend on greatly.”
“Overall, our study points to the potential for unintended and unexpected consequences from the widespread planting of genetically engineered crops,” Tank said. “The exact extent to which aquatic ecosystems are, or will be, impacted is still unknown and likely will depend on a variety of factors, such as current ecological conditions, agricultural practices and climate/weather patterns.”
James Raich, a National Science Foundation program director, adds that “increased use of corn for ethanol is leading to increased demand for corn and increased acreage in corn production. Previous concerns about the nutrient enrichment of streams that accompany mechanized row-crop agriculture are now compounded by toxic corn byproducts that enter our streams and fisheries, and do additional harm.”
The Bt corn researchers stress that their study should not be viewed as an indictment of farmers.”We do not imply that farmers are somehow to blame for planting Bt corn, nor are they responsible for any unintended ecological consequences from Bt corn byproducts,” Tank said. “Farmers are, to a large extent, required to use the latest technological advances in order to stay competitive and profitable in the current agro-industrial system.”
* Toxins in transgenic crop byproducts may affect headwater stream ecosystems
E. J. Rosi-Marshall, J. L. Tank, T. V. Royer, M. R. Whiles, M. Evans-White, C. Chambers, N. A. Griffiths, J. Pokelsek, and M. L. Stephen
ABSTRACT
Corn (Zea mays L.) that has been genetically engineered to produce the Cry1Ab protein (Bt corn) is resistant to lepidopteran pests. Bt corn is widely planted in the midwestern United States, often adjacent to headwater streams. We show that corn byproducts, such as pollen and detritus, enter headwater streams and are subject to storage, consumption, and transport to downstream water bodies. Laboratory feeding trials showed that consumption of Bt corn byproducts reduced growth and increased mortality of nontarget stream insects. Stream insects are important prey for aquatic and riparian predators, and widespread planting of Bt crops has unexpected ecosystem-scale consequences.